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Mobile cognitive tests have been emerged to first, bring the assessments outside the clinics and second, frequently measure
individuals’ cognitive performance in their free-living environment. Patients with Bipolar Disorder (BD) suffer from cognitive
impairments and poor sleep quality negatively affects their cognitive performance. Wearables are capable of unobtrusively
collecting multivariate data including activity and sleep features. In this study, we analyzed daily attention, working memory,
and executive functions of patients with BD and healthy controls by using a smartwatch-based tool called UbiCAT to
1) investigate its concurrent validity and feasibility, 2) identify digital phenotypes of mental health using cognitive and
mobile sensor data, and 3) classify patients and healthy controls on the basis of their daily cognitive and mobile data. Our
findings demonstrated that UbiCAT is feasible with valid measures for in-the-wild cognitive assessments. The analysis showed
that the patients responded more slowly during the attention task than the healthy controls, which could indicate a lower
alertness of this group. Furthermore, sleep duration correlated positively with participants’ working memory performance
the next day. Statistical analysis showed that features including cognitive measures of attention and executive functions,
sleep duration, time in bed, awakening frequency and duration, and step counts are the digital phenotypes of mental health
diagnosis. Supervised learning models was used to classify individuals’ mental health diagnosis using their daily observations.
Overall, we achieved accuracy of approximately 74% using K-Nearest Neighbour (KNN) method.
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1 INTRODUCTION
Cognitive functioning of individuals’ attention, memory, and executive skills characterize the quality of their daily
tasks. The common practice in psychiatry is to assess patients’ cognitive functioning using neuropsychological
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tests. Such experiments are run in a controlled environment and at a certain time of a day suitable for the clinician
and patient. However, a fixed environment and context for taking cognitive tests may negatively impact the
validity and reliability of the test results [2] since human cognition fluctuates during the day [55, 68]. In particular,
patients with Bipolar Disorder (BD) (mania and depression) suffer from cognitive impairment even during their
period of symptom remission [9, 61]. However, time and resource constraints hinder continuous and frequent
monitoring of patients’ cognitive functioning. Therefore, novel computing technologies are essential to obtain
cognitive performance measures over time.
A few smartphone-based tools have been proposed for measuring individuals’ cognitive functioning outside

the clinic [10, 30, 48, 62]. Although these tools have contributed to mobile assessments, the use of wearables
offers two advantages over smartphones. First, wearables can be used to collect reliable data on physical activity
(e.g., step count) and physiological data (e.g., heart rate and sleep). Second, wearables are devices that people wear
all the time and during most activities such as walking and running. Recently, smartwatch-based tools have been
developed to frequently assess cognitive functions [14, 24]. Taken together, wearables provide an opportunity
in conducting in-the-wild studies for collecting multivariate sensor data in conjunction with cognitive test
performance measures. It is, however, essential to evaluate the feasibility of using such tools and their concurrent
validity compared with the gold-standard neuropsychological tests.

Active and passive data collected via mobile devices can assist in identifying digital phenotype of human mental
health [47]. Wearables are capable of unobtrusively collecting various data types. For instance, daily step counts,
physical activities, and sleep duration per cycle are calculated by Fitbit trackers. There is evidence that sleep quality
affects individuals’ cognitive performance during a day [21, 42]. Particularly, patients with BD can potentially
suffer from the negative consequences of their frequent poor sleep quality [5]. To date, digital behavioural
phenotypes of individuals’ mental health have been investigated (for example, [13, 19, 20, 53, 54, 64, 65]). Yet, we
do not know what cognitive, behavioural, and physiological features are significant for mental health diagnosis.
In this study, first, we show the concurrent validity and feasibility of an in-the-wild cognitive assessment

tool developed for Fitbit Ionic smartwatches. Then, we collect daily cognitive performance measures as well as
activity and sleep features using the smartwatch to 1) investigate the impact of sleep on the next-day cognitive
performance measures and 2) identify digital phenotypes of individuals’ mental health diagnosis and 3) classify
patients with BD and healthy controls using supervised learning methods.

2 RELATED WORK
A number of studies have shown the feasibility of mobile cognitive assessments by using Personal Digital
Assistants (PDAs), cellphones, or smartphones [45]. Table 1 gives an overview of studies that have used smartphone
or smartwatch technology for cognitive testing. These studies have all adopted the Ecological Momentary
Assessment (EMA) [59] or Experience Sampling Method (ESM) [37] methodology (which are often mentioned
interchangeably). Prior related work has been focusing on collecting self-reports on mood [14, 15, 29, 63],
sleep [1, 15, 18, 29], activity [15], location [15, 63], and alertness [1, 18]. No effect of sleep quality, mood, location,
or activity stress was found on the cognitive test results in [15]. An ‘in-the-wild’ study investigated individuals’
alertness and showed the effectiveness of using mobile cognitive tasks in detecting circadian variations [18].
However, self-reports on sleep duration and quality did not affect the cognitive test measures. On the other hand,
a similar study reported a negative impact of poor sleep on individuals’ alertness [1].

Previous studies mostly collected self-reported, subjective measures of sleep and behavioural features. In this
study, we collect objective sleep data using Fitbit smartwatches, which has shown acceptable performance in
differentiating sleep and wake cycles [25] and in estimating the accuracy of sleep stage [26]. Activity features
(e.g., step count) are also collected passively using the Fitbit smartwatches. Of the recent studies performed
to assess in-the-wild cognition, two measured objective attention [1, 18], one evaluated working memory [14],
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Table 1. Overview of the studies conducted with mobile devices for cognitive assessments.

Study Device Participants Sampling Duration Cognitive tasks

Timmers et al. [63] Smartphone Young
adults (N=26) 4 times daily 1 day Letter span

Sliwinski et al. [56] Smartphone Adults
(N=219) 5 times daily 14 days Symbol search,

Dot memory

Abdullah et al. [1] Smartphone Students
(N=40) 2 times daily 40 days Psychomotor vigilance

test

Dingler et al. [18] Smartphone Students
(N=12) 1–6 times daily 2–13

days

Psychomotor vigilance,
Go No-Go,
Multiple object tracking

Daniels et al. [15] Smartphone Healthy
adults (N=49) 8 times daily 6 days

Visuospatial working
memory, Digit symbol
substitution

Hung et al. [29] Smartphone Depression
(N=54) once per week 8 weeks Stroop, TMT part B

Cormack et al. [14] Smartwatch Depression
(N=30) 3 times daily 6 weeks N-back

and one assessed working memory and psychomotor speed [15]. We extend this work by measuring three key
cognitive domains, namely, attention, working memory, and executive functions. Our work reports the findings
of a clinical in-the-wild feasibility study conducted with healthy controls and patients with BD, and achieves the
following contributions:

• Demonstrating the concurrent validity of the smartwatch-based tool in assessing individuals’ cognitive
functioning.

• Showing the feasibility of a smartwatch-based tool for continuous, daily, in-the-wild administration of
cognitive assessment tests.

• Investigating the relationship between sleep duration and individuals’ cognitive functioning the following
day.

• Identifying digital phenotypes of human mental health using daily cognitive tests combined with mobile
and wearable sensor data.

• Classifying patients with BD and healthy controls using their daily observations.

3 METHODOLOGY
The methodology of our study is adapted from the EMA/ESM approach and aims at collecting active cognitive
performance measures and passive mobile sensor data. This study was exempted for ethical approval by the
Danish ethics committee (Journal-nr.: H-19086232). All participants were informed about the types of data
collected during the study and signed an informed consent before enrolled in the study (see also Figure 2). We
used a cognitive assessment tool developed for the Fitbit Ionic smartwatches called UbiCAT [23, 24] that collects
daily cognitive performance measures as well as behavioural, contextual, and physiological data. The cognitive
tests of this tool are choice reaction time to measure attention, N-back to evaluate working memory, and Stroop
color-word test to assess executive functions. Each cognitive test of this tool is a standalone smartwatch-based
app. The snapshots and description of the smartwatch-based cognitive tests are presented in Figure 1. The
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choice reaction time test has 40 arrows that appear on either right or left side of the watch screen. The arrows
are right-hand or left-hand. The participants should select the direction of each arrow by tapping either the
right-hand or left-hand rectangle (touch button) as shown in Figure 1a. The N-back test has three difficulty levels
determined by the N value. This test shows a sequence of 40 letters one by one. Figure 1b shows a 2-back task,
thus, the participant should tap on ‘Yes’, if the letterG had appeared 2 letters back in the sequence. The Stroop test
displays 30 color names one by one where each stimuli is either congruent or incongruent. Figure 1c represents
an incongruent stimuli as “Green” is written in pink. Participants should have responded in 2500 ms to each of
the stimuli of the cognitive tests. The time limit in our study was the same as the standard computer-based tools,
namely, PsyToolkit [58] and THINC-it [28] that implement the same cognitive tests as the smartwatch-based tool.
Furthermore, we examined the viability of this time limit during several cognitive test sessions with some users
to ensure that they could respond properly during this time limit.
Table 2 shows the features collected for this study as well as their associated characteristics. As can be seen,

the performance measures of the cognitive tests were the number of correct responses and response times (RTs)
to the test stimuli. The feature ‘missed stimuli’ in Table 2 refers to the number of stimuli in the test sessions to
which the participant did not respond during a time limit (2500 ms). The hit rates and false alarm rates were
also calculated for the N-back test. Hit rate is the number of times that the user correctly identified a match in
the N-back divided by the total matches in the sequence. False alarm rate refers to the number of times that the
user responded as a match while there was no match in the sequence. It should be noted that the RTs in the
choice reaction time tests are the main performance measure to quantify alertness. Therefore, the outliers in
the user’s RTs can lead to incorrect assessment of alertness. However, the primary performance measure in the
N-back and Stroop tests is the number of correct responses. Consequently, the median RT was calculated for the
choice reaction time test since the median value is not sensitive to the outliers in the RTs in contrast to the mean
values [44]. In addition, previous work [1, 6, 8] considered the median RT for the Psychomotor Vigilance Test,
which is one of the cognitive tests in the choice reaction paradigm. As for the N-back and Stroop tests, the mean
RT was calculated which is also inline with the previous related work (e.g., [14, 22, 48] in the N-back and [29, 30]
in the Stroop test).

In order to determine the validity of the tool, we applied the method of ‘concurrent validity’, which is used to
evaluate themeasures of a novel tool against the current practice [40, 46]. Due to the frequent fluctuations in human
cognition, the validity of the smartwatch-based tests was assessed immediately after the neuropsychological test
sessions held at the clinic. Therefore, relevant cognitive domains of the neuropsychological tests were selected
by psychiatrists to evaluate concurrent validity of the smartwatch-based cognitive tests. The tests administered
during the follow-up visits included Trail Making Test (TMT) part A and B [50], Repeatable Battery for the
Assessment of Neuropsychological Status (RBANS) coding and digit span [17], Wechsler Adult Intelligence Scale
Letter-Number Sequencing (WAIS LNS) [33], and verbal fluency [66]. Z-transformation of the raw scores were
calculated per neuropsychological test as provided below:

(1) Composite attention and processing speed scores: Average of z-transformations of the scores in the
RBANS coding and digit span and the TMT part A.

(2) Composite executive functions scores: Average of z-transformations of the scores in the verbal fluency
and TMT part B.

(3) Composite working memory scores: Z-transformations of the scores in the WAIS LNS.
(4) Global cognitive composite scores: Average of z-transformations of the composite scores calculated for

the attention and processing speed (1) and working memory (3).

The scores of the participants with the smartwatch-based cognitive tests were averaged and their z-transformed
scores were used to compare against their global composite scores.
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(a) Choice reaction time test. (b) N-back (N=2) test.

(c) Stroop color-word test.

Fig. 1. UbiCAT Cognitive Tests.

3.1 Study Procedure
Prior to the clinical feasibility study, we conducted a 1-week pilot study with two adults without any previous
mental illness and one patient with BD in order to test data collection as well as refining the study procedure
according to the participants’ feedback. Then, recruitment of participants was commenced at Psychiatric Center
Copenhagen for the in-the-wild clinical feasibility study. The study included both healthy controls and patients
with BD, who were in partial or full remission when they came to the clinic for a follow-up visit. Psychiatrists
define partial remission as scores of <=14 on the Hamilton Depression Rating Scale (HAMD) and Young Mania
Rating Scale (YMRS) and full remission as scores <=7 on these rating scales. Participants were reimbursed with

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 4, Article 129. Publication date: December 2020.



129:6 • Hafiz et al.

Table 2. Features collected throughout the study

# Name Category Type Features

1 Choice reaction time Cognitive Active Median response time, correct responses,
missed stimuli

2 N-back Cognitive Active
Mean response time, correct responses,
hit rate, false alarm rate,
missed stimuli

3 Stroop Cognitive Active Mean response time, correct responses,
missed stimuli

4 GPS Contextual Passive Latitudes and longitudes to detect indoor and
outdoor environments

5 Time of the day Contextual Passive Time extracted from cognitive test logs

6 Physical Activity Behavioural Passive
Step counts, Minutes sedentary,
Minutes lightly active, Minutes fairly active,
Minutes very active, Activity calories

7 Sleep Physiological Passive
Minutes asleep, Minutes awake, Number of
awakenings, Time in bed, Minutes REM sleep,
Minutes light sleep, Minutes deep sleep

an amount equivalent to 1.5 USD per cognitive test and were additionally reimbursed with an amount equivalent
to 3 USD per night in case they wore the smartwatch during their sleeping time.

The study had three stages per participant as illustrated in Figure 2. Participants first underwent neuropsycho-
logical testing at the clinic. Upon finishing their follow-up visit, the study leader (PH) explained the goals and
requirements to them and asked for voluntarily participation in the study. If a participant volunteered, detailed
information on the study was given to them both in writing and orally, and a consent form was signed. Each
participant performed the cognitive tests on the smartwatch immediately after finishing the neuropsychological
tests at the clinic. Followed by that, a Fitbit Ionic smartwatch was given to the participant and s/he was instructed
to perform the cognitive tests for seven days. Activity and sleep data were passively collected using the Fitbit
Application Programming Interface (API).

Three alarms were set on the smartwatches; morning, afternoon, and evening. The hours set for the participant
was not fixed for all of them due to different working or studying schedules. The study leader asked them to take
the cognitive tests one by one in any order when they received an alarm during their earliest suitable time and
emphasized on taking the tests in both indoor and outdoor environments. The stimulus of each smartwatch-based
cognitive test was generated randomly. Each of the N-back sessions were either 1-back, 2-back, or 3-back such
that none of the two consecutive sessions were the same. For instance, if a participant finished a 1-back task,
the next time it was either a 2-back or 3-back task. While participants took cognitive tests on their smartwatch,
their Global Positioning System (GPS) data was collected through the Fitbit API to detect their location. One
read per second was used for the GPS. The Fitbit mobile app was installed on the participant’s own smartphone
since Fitbit smartwatches collect physical activity data in conjunction with their mobile app. Figure 3 illustrates a
participant standing while taking a cognitive test with the smartwatch-based tool.
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Fig. 2. Study procedure performed in three phases per participant.

Fig. 3. A sketch of a participant taking a cognitive test of UbiCAT on the smartwatch while standing. The participant’s
smartphone concurrently collects GPS data.

Participants were asked to return the smartwatch upon finishing the seven-day experiment. A short semi-
structured interview was held with them to explore possible issues and how comfortable or uncomfortable it
was to take the tests indoor or outdoor. In addition, the contexts in which they took the tests as well as their
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positions were inquired. The interview questions are presented in Appendix A. It should be noted that we were
not allowed to record these interview. Thus, the study leader took notes on the participants’ responses during
the interviews. Finally, participants were debriefed about the further analysis of the data in the study.

3.2 Data Collection and Pre-processing
The cognitive tests results were stored locally on the smartwatch. When the smartwatch was handed back at
the end of the study, the test logs were extracted and transferred to spreadsheets. Activity and sleep data were
stored in the Fitbit server. We screened our dataset for missing values and outliers in the cognitive, contextual,
behavioural, and physiological features. It should be noted that according to a previous work conducted on the
smartwatch-based tool [24], the fastest RTs around 200 ms of the study participants were considered as an outlier.
As such, the RTs to the tests stimuli below 200 ms were removed from our dataset. One participant did not wear
the smartwatch during sleep and another participant only took one cognitive test daily and took off the watch
during sleeping hours in most of the nights. The samples of these participant was excluded from data analysis.
The relative RTs of the participants were calculated to obtain the degree to which their alertness increased

or decreased. The positive and negative values of the relative RTs shows an increase or decrease in their own
alertness, respectively. Given that MRTs ,p is the median RT of participant p in session s of the choice reaction
time test, we calculated MMRTs ,p as the mean of MRTs ,p to obtain the RRTs ,p (relative RT) as shown in eq. (1)
(taken from [1]).

RRTs ,p = (1 −MRTs ,p/MMRTs ,p ) ∗ 100 (1)

Two datasets were prepared for analysis of the results of this paper. A dataset was used for analyzing the
impact of sleep on the next-day cognitive performance in Section 4.3. To create this dataset, first, the accuracy
of the participants were averaged separately per test for each day. Then, the participant’s sleep data during
one night before was added to the daily cognitive observations. The second dataset was prepared by adding
participants’ corresponding daily activity features to the first dataset for the purpose of digital phenotyping and
training supervised models as reported in Section 4.4. This combined dataset is referred as daily cognitive and
mobile data in the rest of the paper.

3.3 Data Analysis
Several methods were used to calculate the results of this study. Pearson correlation was used for evaluating
concurrent validity of the smartwatch-based tool and the association between sleep duration and cognition. T-test
was performed to compare the healthy and patient groups with each other. Analysis of Variance (ANOVA) was
applied to assess feasibility of the smartwatch-based tool by measuring the impact of environment on participants’
cognitive performance measures. Principal Component Analysis (PCA) [70] was performed using the factoextra
package [32] to derive the contribution of the dataset features to the principal components with an eigenvalue >1.
The rest of the figures in this paper were created using the ggplot2 [69] and ggstatplot [49] packages in R studio.

Supervised predictive models were used to classify healthy controls and patients with BD. Random Forest
(RF) [39], Extreme Gradient Boosting (XGBoost) [12], Support Vector Machines (SVM) (radial kernel) [57], and
KNN [3] were used to build the predictive models in caret package [36]. The label assigned to the observations
was their mental health diagnosis (healthy or patient) and the positive class for the predictive models was the
patient’s class. Each model was trained and tested using the leave-one-subject-out cross validation method such
that daily observations of a participant was put only in the test set and the rest of the observations were put
in the train set. We applied 5-fold cross validation to train each model. The performance evaluation metrics
are accuracy, precision, recall, and F1-measure. Accuracy calculates the number of correctly-classified samples.
Precision quantifies how many observations were classified as ‘patient’ which were actually a patient. Recall
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shows the extent to which a classifier can identify observations in the ‘patient’ class. F1-measure calculates the
harmonic mean of precision and recall [72].

4 RESULTS
We initially recruited 10 healthy controls and 8 patients with BD. Of the participants, 9 healthy controls and 6
patients completed their seven-day experiment (N = 15). Table 3 reports gender, age, education years of the
participants, HAMD and YMRS clinical ratings, and verbal intelligence quotients for each group. In total, we
collected the following number of observations per smartwatch-based cognitive test: 318 for the choice reaction
time, 294 for the N-back, and 309 for the Stroop test. The corresponding mean and standard deviation of the
completion times (in second) per cognitive test session are 30.02±4.54, 33.02±8.30, and 36.99±6.37. Participants
used the smartwatch between 6 and 18 days (8.60±2.80). It should be noted that a participant took the tests for 18
days kept the device longer than the rest of the participants due to a problem in handing back the device.

Table 3. Characteristics of study participants reported separately for patients and controls.

Characteristic Measure Statistics
Healthy Control Bipolar Patient

Gender Female 5 5

Male 4 1

Age Mean±SD 34±13 32±6

Years of education Mean±SD 16±1.8 15±2.04

HAMD Mean±SD 1.1±1.3 5.2±3.5

YMRS Mean±SD 0.7±2 2.3±3.2

Verbal Intelligence Quotient Mean±SD 115±5 108±3

4.1 Validity and Feasibility of the In-the-wild Tool
The participants’ smartwatch-based test results were used to investigate the concurrent validity of the tool.
Table 4 shows the correlation coefficients applied between the neuropsychological tests and the UbiCAT tests per
cognitive domain as well as the global cognition. We found a strong, significant correlation between the average
scores obtained from the smartwatch-based and neuropsychological tests (r=0.77) indicating adequate concurrent
validity of the smartwatch-based tool. The cognitive domains also correlated significantly (r=0.58-0.64). It should
be noted that correlation analysis for attention and processing speed was performed between two cognitive
test scores of the smartwatch-based tool namely choice reaction time and Stroop’s score of congruent stimuli.
Although the analysis for the Stroop’s congruent scores did not reveal a significant correlation coefficient, the
choice reaction time test showed a significant p-value indicating validity of this test for measuring attention and
processing speed.
Feasibility of our study instrument was examined to demonstrate the viability of smartwatches in assessing

in-the-wild cognitive functioning considering the impact of indoor and outdoor places on participants’ cognitive
performance measures together with the interviews conducted with them. Of all participants, five patients and
seven healthy individuals took the smartwatch-based tests both in indoor and outdoor environments according
to their GPS data. Table 5 shows that their performance measures in all of the tests were statistically not different
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Table 4. Pearson correlation analysis between neuropsychological tests and UbiCAT test scores.

Cognitive Function Neuropsychological Test UbiCAT Test Pearson’s r p

Executive functions Verbal fluency and TMT-B Stroop’s score to
incongruent stimuli 0.58 0.024

Working memory WAIS LNS N-Back 0.63 0.011
Attention and processing speed TMT-A and RBANS Choice reaction time 0.64 0.010

Stroop’s score to
congruent stimuli -0.11 0.686

Global cognition Working memory
and attention Composite scores 0.77 <0.001

in the indoor and outdoor places demonstrating the feasibility of the smartwatch-based tests in individuals’
free-living context. Seven participants could allocate time for the post-study interview. None of them mentioned
any issue except for one participant: "I felt uncomfortable when I was together with people". Their position while
taking the cognitive tests were also investigated; four participants reported sitting as their most common position
while two reported that they sometimes took the tests while traveling (e.g., on the bus). Two participants took
the tests while walking. One patient and one healthy participant reported that they were motivated by using the
smartwatch, stating that: “It motivated me to track my data and I checked my activities all the time”, and “The
watch motivated me to walk more”.

Table 5. Analysis of variance applied to examine the impact of indoor and outdoor places on the tests measures

UbiCAT Test Observations (Nr.) Indoor/Outdoor (ratio) Performance Measure Mean Square F p

Choice-reaction time 249 6.32 Median response times 4505.44 0.45 0.501
Num. of correct responses 0.41 0.35 0.553

N-Back 217 5.78 Mean response times 15478.79 0.34 0.560
Num. of correct responses 9.38 0.09 0.759

Stroop 227 5.88 Mean response times 14294.25 0.30 0.583
Num. of correct responses 2.50 0.57 0.452

4.2 Alertness Per Hour
Individuals’ alertness fluctuates during the day [55] and the choice reaction time paradigm tests are typically used
for measuring individuals’ alertness. Hence, we used the choice reaction time test of the smartwatch-based tool
to measure and compare the alertness of the patients and healthy controls. The records of one healthy participant
in the choice reaction time test were removed since this participant had some issues with the touch sensitivity of
the smartwatch screen. Figure 4 shows the median RTs per group and shows that the median RTs of the Healthy
Control (HC) group were statically lower than the Bipolar Patient (BP) group (t(230.30)=5.24, p<0.001) indicating
better alertness of the healthy controls.

Figure 5 represents the participants’ median RTs for each hour that they performed the tests. Both groups did
the choice reaction time test mostly at 9AM (patient:16, healthy:7), 1PM (patient:14, healthy:17), 2PM (patient:18,
healthy:16), and 6PM (patient:20, healthy:12). Independent samples t-test along with Bonferroni adjusted p-values
(pbonf ) revealed that patients responded significantly slower at 2PM (t(32)=3.52, mean difference= 113.67, SE=
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Fig. 4. Median response times of the healthy and patient groups in the choice reaction time test.

32.26, pbonf =0.001) and 6PM (t(30)=4.10, mean difference= 104.17, SE= 25.41, pbonf <0.001). The relative RTs were
calculated per participant similar to the approach used in previous work [1, 34, 67]. Figure 6 shows the percentage
to which the alertness of the individuals in the BP and HC groups increased or decreased compared with their
own median RTs in each hour, showing an almost balanced number of positive (N=153) and negative (N=132)
samples. The ratio of negative samples of the patients (48%) was higher than the healthy controls (45%) while
the ratio of the positive samples of healthy controls (55%) was higher than the patients (52%). Thus, the drop in
alertness was higher in the patients while the rise in alertness was higher in the controls.

Fig. 5. Hourly representation of the median response times in the choice reaction time test.
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Fig. 6. Relative response times of the participants in the choice reaction time test per hour.

4.3 Correlation between Sleep Duration and Cognition

Fig. 7. Sleep duration in minutes visualized for healthy and patient groups.

Sleep duration of the participants is visualized in Figure 7 showing that patients slept more than healthy controls
(t(98.26)=3.68, p<0.001). Correlation analysis between sleep duration and the next-day cognitive performance
measures revealed a significant coefficient in terms of the N-back hit rates as a measure of working memory
performance (r=0.26, p=0.026). It can be inferred that more sleeping led to higher accuracy in recalling the letters

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 4, Article 129. Publication date: December 2020.



Wearable Computing Technology for Assessment of Cognitive Functioning of Bipolar Patients and Healthy Controls • 129:13

during the N-back test sessions. The rest of the cognitive test measures did not reveal any significant correlation
with sleep duration. Minutes of light and deep sleep also did not correlate with the cognitive test performance
measures. The difference in the participants’ N-back hit rates and sleep duration are depicted in Figure 8 per
group. The ratios in both plots were calculated by taking the first value (day 1) as the basis to compare to the
next days. While the difference in the sleep and hit rates of the two groups do not have the same pattern, there is
a similar trend in their hit rates and sleep duration within groups.
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Fig. 8. Overall difference of N-back hit rates and minutes asleep per group.

4.4 Daily Cognitive and Mobile data
The daily cognitive and mobile data had N = 81 observations. Five incomplete cases were removed from this
dataset such that N = 76 observations remained (bipolar:40, healthy: 36). The features of this dataset were time
in bed, sleep duration, number of awakenings, minutes awake, step counts, mean RTs during the Stroop and choice
reaction time tests, and average accuracy in the N-back, Stroop, and choice reaction time tests. Since some of the
healthy participants did not wear the smartwatch during sleep, their observations were incomplete. Moreover, the
patient who used the smartwatch for 18 days had more observations than the rest of the participants. Therefore,
the total number of daily observations of the patients is higher than the healthy participants although the number
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of healthy participants is more than the patients. It should be noted that the RTs of the N-back tests were not
included since the mean RTs of the tests with various difficulty levels were not comparable .

4.4.1 Statistics and Comparison. Table 6 reports the descriptive statistics of the total daily missed counts during
the cognitive test sessions and the average accuracy of the participants in each test. Themissed count is the number
of times that a participant did not respond to the test stimuli throughout a test session. As such, daily missed
count is the sum of missed counts calculated for the test sessions that the participant completed each day. T-test
revealed that the patients had more daily missed counts compared with the healthy controls (t(72)=3.24, p<0.001),
indicating inability of the patients with BD in responding during the time limit of the cognitive tests. The average
accuracy of the healthy controls in their daily cognitive tests with the smartwatch was higher than the patients
although t-test analysis did not give significant p-values. The RTs during the Stroop test was averaged per day for
each participant and t-test showed a significantly higher RTs of the patients (t(72)=1.93, p=0.029). Hence, patients
were slower in selecting the correct ink color of the stimuli in the Stroop test (see Figure 1c). The participants’

Table 6. Descriptive statistics of the daily missed counts and average accuracy in the cognitive tests

Missed Counts CRT accuracy (%) N-back accuracy (%) Stroop accuracy (%)
BP HC BP HC BP HC BP HC

Mean 3.17 1.35 98.98 99.20 90.59 92.49 96.15 96.80
SD 3.67 1.66 1.35 1.47 5.24 4.26 2.75 2.87
Minimum 0.00 0.00 95.00 92.00 78.67 83.50 88.00 87.00
Maximum 18.00 7.00 100.00 100.00 100.00 100.00 100.00 100.00

daily step counts are represented in Figure 9a, showing that patients’ mobility was significantly higher than
the controls (t(78.75)=2.03, p=0.046). Results also showed significant differences between sleep features of both
groups. Patients spend more time in bed compared with the controls (t(78.35)=3.46, p=0.001) as can be observed
in Figure 9b. The number of awakenings per sleeping cycle was higher in the patients as shown in Figure 10a
(t(93.75)= 3.70, p<0.0001). Moreover, the duration of awakenings was longer in the patients (t(88.92)=3.20, p=0.001)
as can be seen in Figure 10b. Taken together, we found significant differences between multivariate features of the
patients and healthy controls through their daily observations. These features determine the digital phenotypes
of individuals’ mental health diagnosis as presented in Table 7.

Table 7. Digital phenotypes of mental health diagnosis

Category Features

Cognitive
-Response times in the choice reaction time test
-Response times in the Stroop test
-Missed stimuli

Physiological

-Minutes asleep
-Time in bed
-Number of awakenings
-Minutes awake

Behavioural -Step counts

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 4, Article 129. Publication date: December 2020.



Wearable Computing Technology for Assessment of Cognitive Functioning of Bipolar Patients and Healthy Controls • 129:15

(a) Daily step counts. (b) Time in bed.

Fig. 9. Time in bed and daily step counts of each group.

(a) Number of awakenings. (b) Minutes awake.

Fig. 10. Number of awakenings and duration of awakenings of each group.

4.4.2 Feature Analysis and Predictive Models. PCA was performed to analyze the features in the dataset. The
contribution of the dataset features to the Principal Component (PC) 1 and PC 2 are plotted in Figure 11a. The
dataset observations were projected according to the direction of the largest variance as represented in Figure 11b.
The PCs with an eigenvalue greater than 1 were PC1 (2.72), PC2 (2.18), PC3 (1.42), and PC4 (1.16). As such, we
derived the features with a contribution higher than the expected average by dividing 1 by the number of features.
As we have N=11 features int he daily mobile and cognitive dataset, the expected value is 9%. According to the
contribution scores generated by the functions in factorextra package, the features that contributed around the
expected value were time in bed, sleep duration, accuracy and RT to the choice reaction time test, step counts, and
RT to the Stroop. The supervised models were then trained and tested using these features. The performance
evaluation results of the supervised models are reported in Table 8. As can be seen, the average accuracies of the
KNN and SVM are higher than RF and XGBoost. KNN could more accurately classify the patients’ observations
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(a) Dataset variables and their contributions. (b) Projection of the dataset observations.

Fig. 11. Principal Component Analysis.

than the rest of models due to the highest average precision. KNN also gave the highest F1-measure compared to
the rest of the models.

Table 8. Mean and standard deviations of the performance evaluation metrics for
classification of healthy and patient groups.

Method Accuracy (%) Precision (%) Recall (%) F1-Measure (%)
KNN 74.73±1.72 75.78±2.17 76.50±1.37 76.13±1.46
RF 67.64±1.18 68.25±0.95 72.00±2.09 70.06±1.30
SVM 72.10±1.71 72.92±1.80 74.83±2.91 73.84±1.75
XGBoost 68.74±3.94 72.12 ±4.22 67.35±4.49 69.60±3.68
XGBoost: Extreme Gradient Boosting; KNN: K-Nearest Neighbour; RF: Random Forest; SVM:
Support Vector Machines

5 DISCUSSION
The results from this study show that smartwatch-based assessment of cognitive functioning correlatedmoderately
to strongly (r=0.58-0.77) with state-of-art neuropsychological tests, thus, demonstrating adequate concurrent
validity of the smartwatch-based cognitive tests. Furthermore, the study shows the feasibility of ‘in-the-wild’
assessment of cognitive functioning since participants’ cognitive performance measures were statistically the
same in both indoor and outdoor environments. To our knowledge, this study is the first that 1) demonstrated
feasibility of assessing key cognitive functions of the patients with BD and healthy controls in their free-living
context and 2) identified digital phenotypes of individuals’ mental health diagnosis from a dataset including their
daily cognitive, behavioural, and physiological features.
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5.1 Sleep and Cognitive Functions
One of the cognitive performance measures of the N-back test was hit rates. The higher the hit rate, the better
ability of the user in keeping the letters in his/her mind and thus better working memory performance. We
showed a significant correlation between sleep duration and the next-day working memory performance in
terms of the N-back hit rates (see Section 4.3). Such finding is in line with the results of the study by Russo et
al. [52] who demonstrated a negative impact of sleep disturbance on working memory for patients with BD.
Moreover, cognitive load is induced by learning tasks and it directly involves working memory ability [16] while
too much cognitive load adversely affects learnability [31, 60, 71]. The significant correlation coefficient between
sleep duration and working memory of the participants may inform the Ubicomp community about adjusting
learnability of the smartphone-based tasks according to the user’s sleep duration the night before.
Similar to Dingler et al. [18], we did not find a significant impact of sleep on alertness although we used

objective sleep measures. However, another study [1] did find a significant impact of sleep variation on individuals’
alertness while their study aimed to systematically measure circadian rhythm during 40 days, their sample size
was larger (N = 20) and a different target population (young college students) took part in their study.

5.2 Digital Phenotypes of Mental Health Diagnosis
The statistical comparison between the cognitive performance measures of the patients with BD and healthy
controls determined the processing speed of the participants during the choice reaction time as one of the
cognitive, digital phenotypes of human mental health. Patients with BD responded more slowly compared with
healthy controls during the choice reaction time test although the patients were in remission. This is in line with
prior research showing that cognitive impairment remains in patients with BD despite being in remission [9, 61].
We also showed that 1) patients’ responses were statistically slower than the controls at 2PM and 6PM and
2) there were more drop and less rise in patients’ alertness compared with the healthy controls (see Figure 6).
The meaningful difference between alertness level of the healthy and patient groups together with hourly-basis
analysis of their alertness may inform the Ubicomp community to consider individuals’ mental health diagnosis
as a potential feature for managing attention-demanding tasks per hour. Prior work has established the threshold
for an impairment in alertness using smartphones as 500 ms in [7]. According to Figure 4, the results from this
study seems to imply that the threshold of median RTs for distinguishing patients and healthy controls is 800 ms
when using a smartwatch-based tool. The difference between the modality of smartphones and smartwatches
justifies the difference between individuals’ RTs. Participants’ processing speed during the Stroop test is another
cognitive, digital phenotype due to the statistically-significant difference found between healthy and patient
groups. Taken together, moment-by-moment assessment of cognitive functioning using the smartwatch-based
tool can uncover an onset of a mental disorder through slow RTs in the choice reaction time and Stroop tests.

The daily average cognitive test accuracy of the healthy group was slightly higher than the patients although
the t-test did not reveal any significant p-value (see Table 6). Daily missed counts in the cognitive tests sessions
were calculated per participant. Patients on average missed more stimuli than the healthy participants. The
higher number of daily missed count indicates an inability to respond within a time limit. While none of the
previous related work investigated individuals’ missed stimuli particularly patients with BD, we showed that this
objective measure has a great potential in distinguishing patients with BD and healthy controls from each other.
Therefore, missed stimuli is another cognitive, digital phenotype of mental health diagnosis concerning cognitive
ability of the individuals.
Significant differences were found between sleep data of the patients and healthy controls such that patients

with BD slept more, stayed longer in bed, were awakened more often and for a longer duration per sleeping cycle.
Hence, these features are considered as the physiological, digital phenotypes of the patients with BD and the
healthy controls. The higher sleep duration of the patients is inline with the findings of a study conducted with

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 4, Article 129. Publication date: December 2020.



129:18 • Hafiz et al.

controls and patients with BD using actigraphy [43]. Furthermore, the higher awakening duration and frequency
in the patients with BD may justify the longer sleep duration of the patients compared with the controls. Figure 9b
also showed that the patients stayed more time in bed compared with the healthy controls. Sleep disturbance of
the patients with BD was previously demonstrated in [51] and more time in bed and higher awakenings may
inform about sleep disturbance of the patients.
Mobility of the patients in terms of their step counts was also higher than the controls that determines step

counts as the behavioural, digital phenotypes of human mental health diagnosis. While we observed higher
mobility in patients compared with the controls, it did not seem to be explained by more subsyndromal mania
symptoms, which was examined using their YMRS ratings. Such finding should be interpreted with caution given
the small sample size of our study. Moreover, some of the participants mentioned that they were motivated by
the Fitbit smartwatches to walk more according to the interviews conducted with them in Section 4.1.

5.3 Implications of the Supervised Models
Various models were trained and tested on the daily cognitive and mobile dataset. We showed the potential of
supervised learning methods in classifying patients with BD and healthy controls using a dataset including daily
observations of cognitive functioning, sleep, and activity features captured by the smartwatches. KNN is a simple
and non-parametric classifier without any assumption about the underlying data [27] while it is susceptible to the
noise in the data. However, the impact of noise is less significant when using simple classifiers like KNN rather
than more complicated methods like RF and SVM [73]. SVM is suitable when classes are separable but does not
perform well in case of overlapped classes. This method performed comparably better than the XGBoost and RF
techniques. XGBoost uses an ensemble of decision trees and is an enhanced algorithm of gradient boosting [12].
However, it did not perform as expected. RF is also a tree-based method that similarly did not perform well.
Above all, the KNN model gave the highest average accuracy of nearly 74% to show the potential of supervised
modelling in classifying patients with BD and healthy controls using multivariate active and passive data.

5.4 Perspectives
The results of this study justify the feasibility of utilising objective sleep and activity data in cognition-aware
systems to help in managing the demand on users’ working memory the following day by, for example, reducing
task load in case of poor sleep quality. Furthermore, our findings paves the way for building clinical decision
support systems using wearable and mobile sensor data for timely detection of the mental disorders in particular
BD. Continuing this line of research will also enable researchers to include mobile and wearable sensor data in
their studies to identify other digital phenotypes of cognition. One such feature is ambient noise, which can be
collected via the smartphone’s microphone. Possible associations between cognitive performance measures and
moment-by-moment stress ratings may also provide new knowledge. Moreover, phone interaction features such
as gestures and accelerometer measures can be integrated with the features we collected in our study toward a
more comprehensive identification of digital phenotypes of mental health. Future studies may collect variance in
the participants’ RTs to investigate significant differences between responses of the patients and healthy groups.

5.5 Limitation
This study have some limitations. First, the final sample size (number of participants) was smaller than planned due
to the COVID-19 outbreak, which required recruitment to be stopped before the study ended. Nevertheless, our
findings still provide a statistically-significant analysis on cognitive performance measures and daily mobile data
in particular related to the concurrent validity and feasibility of the smartwatch-based tool and the identification
of digital phenotypes of mental health. Second, the fluctuations in the RTs over the course of the day depend on
several factors including the chronotype of the individuals (for example, morningness vs, eveningness), which
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we did not control for this study. Third, the golden standard for sleep assessment in clinical studies are typically
self-reported sleep assessments [11], activity patterns of wrist-worn actigraphy [4], or polysomnography for
sleep monitoring [35, 38, 41]. Even though acceptable performance of the Fitbit device in collecting sleep data
have been demonstrated [25, 26], such consumer sleep tracking devices are not medical devices and might not be
as accurate.

6 CONCLUSION
This study showed that a smartwatch-based cognitive assessment tool is a valid instrument for measuring
attention, working memory, and executive functions. Moreover, this tool is feasible for frequent assessment of
the key cognitive functions ‘in-the-wild‘, i.e. in both indoor and outdoor environments, as well as when users
are taking different positions such as sitting, standing, and walking. We also showed the potential of wearable
computing technology in collecting daily multivariate, active and passive data for digital phenotyping and
supervised modelling. Patients with BD responded slower in the attention test compared to healthy controls,
indicating lower alertness level of the patients. Sleep duration correlated positively with the next-day working
memory performance, which may help inform the design of cognition-aware computing system when cognitive
load is managed in accordance with sleep duration. Digital phenotypes of mental health were determined by
comparing cognitive performance measures and sleep and activity data of the patients with the healthy controls.
We conclude that using mobile and wearable technology for ambulatory collection of individuals’ physiological,
behavioural and cognitive features provides the basis for assisting clinicians in continuously monitoring patients’
symptoms for early diagnosis and treatments of mental disorders.
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A QUESTIONS ASKED DURING THE POST-STUDY INTERVIEW
(1) How was your experience with the cognitive tests on the smartwatch?
(2) What positions did you take while doing a test on the smartwatch (e.g. sitting, walking, standing)?
(3) Did you take the cognitive tests outside (e.g. on the street)? If yes, describe it and explain how you perceived

the situation.
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